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Supplementary Material S1. Mathematical formulation of compartmental models. 

In standard compartmental analysis framework [S1,S2,S3], the flow of tracer, resulting from interchange 

of radioactive molecules between the model compartments, is described by a system of Ordinary 

Differential Equations (ODEs) for concentrations with constant coefficients, called rate constants or kinetic 

parameters. By the use of a LigandTracer (LT) device we obtain time-dependent curves for total tracer 

activity in cells. In order to derive the system of ODEs in terms of activities, we start with the formulation 

in terms of concentrations (Bq/mL) denoted by the letter 𝐶	with a low subscript identifying the 

compartment.  

The system of ODEs for the tracer concentrations 𝐶#, 𝐶$, 𝐶%	of the 4C model is written as  

𝐶# = 	− 𝑘) + 𝑘+ 𝐶# + 𝑘,𝐶% + 𝑘-𝐶.       (S1) 

𝐶$ = 𝑘+𝐶# − 𝑘/𝐶$         (S2) 

𝐶% = 𝑘/𝐶$ − 𝑘,𝐶%          (S3) 

with the initial conditions  𝐶# 0 = 	𝐶$ 0 = 	𝐶% 0 = 0. The  function 𝐶. is the concentration of tracer in 

the medium. Concentrations and corresponding activities are related by  

𝐶# = 	
12
3456

 ,   𝐶$ =
17
3456

 ,   𝐶% =
18
398

 ,   𝐶. =
1:
3:

 ,       (S4) 

where 𝑉<=> is the total volume of cytosol, 𝑉?% is the total volume of the endoplasmic reticulum (ER), and 𝑉. 

is the volume of the liquid medium. Substitution of activities in Eqs (S1), (S2), (S3), and multiplication of 

both sides of the equations by 𝑉<=>, lead to the following system of ODEs for the 4C activities: 

𝐴# = 	− 𝑘) + 𝑘+ 𝐴# + 𝑘,𝐴% + 𝑘-𝐴.       (S5) 

𝐴$ = 𝑘+	𝐴# − 𝑘/𝐴$          (S6) 

𝐴% = 𝑘/	𝐴$ − 𝑘,𝐴%         (S7) 

with 

𝑘- = 	𝑘-
3ABC
3:

 ,   𝐴% = 𝐴%
3ABC
3DE

 ,         (S8) 

and initial conditions 𝐴# 0 = 𝐴$ 0 = 	𝐴% 0 = 0. The activity 𝐴.	of tracer in the medium is the given 

input function, while 𝐴%	is an auxiliary unknown. With the only exception of 𝑘-, the two systems of Eqs 



(S1), (S2), (S3) and (S5), (S6), (S7) depend on the same rate constants.  

Concerning the 3C model, the system of ODEs for the tracer concentrations 𝐶# and 𝐶$ is 

𝐶# = − 𝑘) + 𝑘+ 𝐶# + 𝑘F𝐶$ + 𝑘-𝐶.       (S9) 

𝐶$ = 𝑘+𝐶# − 𝑘F𝐶$ .          (S10) 

Straightforward repetition of the above procedure leads to the following system of ODEs for the 3C 

activities 𝐴#, 𝐴$: 

𝐴# = 	− 𝑘) + 𝑘+ 𝐴# + 𝑘F𝐴$ + 𝑘-𝐴.       (S11) 

𝐴$ = 𝑘+	𝐴# − 𝑘F𝐴$ .          (S12) 

Intracellular tracer is contained in cytosol and ER. Following a standard approach [S3], we express the total 

concentration of tracer for the cell culture 𝐶<?GGH as 

𝐶<?GGH = 1 − 𝑣%	 (𝐶# + 𝐶$) + 	𝑣%𝐶% ,        (S13) 

where 𝑣% =
398

3456M398
 is the volume fraction of ER with respect to the total volume occupied by tracer. 

The total concentration of the cell culture and the related activity 𝐴<?GGH	obey the equation  

𝐶<?GGH = 	
149NNO

3456M398
 .          (S14) 

Substitution into Eq. (S13) of 𝐴<?GGH and replacement of compartment concentrations with the corresponding 

activities, lead to the equation 

𝐴<?GGH	 = 	𝐴# + 𝐴$ + 𝐴% = 	𝐴# + 𝐴$ + 𝑣	𝐴% ,       (S15) 

where the adimensional constant	𝑣	 = 𝑉PQ/𝑉STU is introduced to relate the datum 𝐴<?GGH	to the solutions of 

the system of Eqs (S5), (S6), (S7). In the case of the 3C model, Eq. (S13) simplifies to 

𝐶<?GGH = 𝐶# + 𝐶$ ,          (S16) 

and thus 

𝐴<?GGH	 = 	𝐴# + 𝐴$ .          (S17) 

Eqs (S15) and (S17) are applied in this work to connect the available data to the model activities. 

 



Supplementary Material S2. Lumped Constant. 

There are well known similarities in the kinetics of FDG and glucose. The Lumped Constant (𝐿𝐶) was 

introduced to take profit of these similarities in order to estimate the metabolic rate of glucose in terms of 

the corresponding metabolic rate of FDG. Here we analyse the 𝐿𝐶 in the framework of the 4C model. To 

this aim, the definition of 𝐿𝐶 is first revisited for the standard 3C model, commonly referred to as the 

Sokoloff model. We adopt a simplified approach with respect to, e.g. [S4] and followers, which however 

is sufficient for our purposes.  

First we examine the flux of glucose from medium to cells, followed by phosphorylation inside cells, under 

the assumption that glucose kinetics is ruled by the 3C model [S4]. Accordingly, we adopt the notations 

and symbols already introduced for FDG kinetics, with addition of a superscript 𝑔 to indicate that they refer 

to glucose; for example, the concentration of glucose in the medium is denoted by 𝐶.
X. We assume that the 

flux is stationary, which means that 𝐶.
X 

and 𝐶#
X 

are considered constant. We add the condition 𝑘F
X = 0, 

which is the mathematical counterpart of the assumption of a low activity level of G6Pase.  

We consider tracer kinetics in the 3C system, described by Eqs (S9), (S10). We assume that: 1)	𝑘F = 0, 

and 2) tracer flow has reached a stationary state, corresponding to constancy of  𝐶. and 𝐶#. We denote by 

𝑈Z[\	and 𝑀𝑅\G_ the uptake rate of FDG and the metabolic rate of glucose, respectively. These rates are 

identified with the corresponding net rates of phosphorylation [S2] in the reactions catalysed by hexokinase. 

Since 𝑘F = 𝑘F
X = 0, we obtain  

𝑈Z[\ = 𝑘+𝐶# ,   𝑀𝑅\G_ = 𝑘+
X𝐶#

X .         (S18) 

Introduction into Eqs (S9), (S10) of the stationary condition yields  

𝑈Z[\ = 𝑘+𝐶# = 𝛼𝐶. ,   𝛼 =
abac
adMac

 .        (S19) 

Eq. (S19) shows that the metabolic rate 𝑈Z[\  is related to the input concentration 𝐶. through the constant 

factor 𝛼; the coefficient 𝛼 represents the slope of the well known “Patlak plot” [S4] and may be regarded 

as the rate constant for tracer uptake by the cell system. Indeed, evaluation of the time derivative of Eq. 

(S16) shows that 𝐶<?GGH = 𝐶$ = 𝑘+𝐶# = 𝛼𝐶..  

In order to connect the metabolic rates of FDG and glucose, we refer to [S4] to write  



efgh
ijhNk

=
3lml

n o2
3l
nmlo2

n =
aco2
ac
no2

n ,          (S20) 

where 𝑉p and 𝐾p are the Michaelis-Menten constants for the phosphorylation reaction; specifically, 𝑉p is 

the maximum rate of the reaction, while 𝐾p is the concentration 𝐶# that produces a reaction rate of one half 

the maximum value. We recall explicitly that 𝐶# and 𝐶#
X 

are constant, and hence also the metabolic rates 

are constant. Multiplication of both sides of Eq. (S20) by 𝐶.
X/𝐶.

 provides  

efgh/o:
ijhNk/o:

n = 𝐿𝐶 ,           (S21) 

where the Lumped Constant 𝐿𝐶 is represented as 

𝐿𝐶 =
3lml

n o2/o:
3l
nmlo2

n/o:
n =

aco2/o:
ac
no2

n/o:
n	.         (S22) 

The first expression of 𝐿𝐶 is consistent with the literature [S2,S4]. It follows from Eq. (S21) that  

𝑀𝑅\G_ =
-
so

efgh
o:

𝐶.
X .          (S23) 

According to Eq. (S19), we find  

𝑀𝑅\G_ =
-
so

abac
adMac

𝐶.
X ,          (S24) 

which provides the required metabolic rate of glucose in terms of the lumped constant 𝐿𝐶, the constant 𝛼 

for FDG, and the concentration of glucose in the medium 𝐶.
X. In terms of 𝑘-, Eq. (S24) may also be written 

as  

𝑀𝑅\G_ =
-
so

3:
3456

abac
adMac

𝐶.
X.          (S25) 

Suppose now that: 1) tracer kinetics is described by the 4C model, 2) the (asymptotic) condition of 

stationarity holds, 3) 𝑘, = 0. According to stationarity 𝐶., 𝐶#, and 𝐶$ are constant, which means that the 

concentration of each compartment has reached equilibrium, with the exception of ER, where accumulation 

occurs. As to 𝐶# and 𝐶$, the condition of stationarity is attained in a few minutes, following the related 

activities; as to 𝐶., its (approximate) constancy is related to the very limited amount of tracer absorbed by 

the cell cultures, versus the total content of the medium. The constraint 𝑘, = 0 follows from the remark 

that 𝑘, is of order 10-3, and hence it is approximated by zero; it plays the same role as the condition 𝑘F = 0, 

for 3C model.  



As in the case of 3C model, the net rate of phosphorylation of FDG is given by 𝑘+𝐶# = 𝑈Z[\ , so that Eq. 

(S18) still holds. Note that, unlike the previous case, 𝐶$ = 0 because of stationarity; however the 

contribution −𝑘/𝐶$, entering Eq. (2), corresponds to flow of phosphorylated tracer towards ER, so that it 

is not directly involved in the phosphorylation-dephosphorylation process, although it contributes to the 

rate of concentration 𝐶$ in cytosol. As a consequence of Eq. (S1) and stationarity, Eq. (S19) holds and the 

previous analysis applies. In particular, Eqs (S24) and (S25) provide 𝑀𝑅\G_, but the rate coefficients are 

determined by reduction of the 4C model.  

To comment on the procedure, we observe that, strangely enough, the rate constant 𝑘/ does not contribute 

explicitly to the metabolic rate of FDG, although the the quantity 𝑘/𝐶$ describes flow from the pool of 

phosphorylated tracer in cytosol to that of phosphorylated tracer in ER. However, Eqs (S2) and (S3) imply 

that 𝑘/𝐶$ = 	𝑘+𝐶# = 𝐶% . Therefore, the net phosphorylation rate of FDG may also be written as 

𝑈Z[\ = 𝑘/𝐶$           (S26) 

and, since 𝐶$ is constant, 𝑘/ may be considered as directly proportional to 𝑈Z[\ . Finally, the metabolic rate 

of glucose as defined in Eq. (S23) can be rewritten for the 4C model as 

𝑀𝑅\G_ =
-
so

ato7
o:

	𝐶.
X .         (S27) 

 

Supplementary Material S3. Direct dependence of 𝑘- on the efficiency coefficient 𝑒. 

Simulations at different values of the efficiency coefficient 𝑒, accounting for a variability up to 40%, show 

that the standard deviation for 𝑘-is about 50% for both Gl1 and Gl2 data, and reduction by both 3C and 4C 

models, whereas the other rate coefficients have been left almost unaltered. It is the aim of this section to 

put forward a qualitative argument showing that the high variability of  𝑘- is inherently dependent on 

modelling assumptions and the system response. For definiteness the 4C model is examined.  

We consider the system of ODEs for the activities (S5), (S6), (S7) and discard the contribution 𝑘,𝐴%. This 

simplification is consistent with the estimates of the rate constants, showing that 𝑘, is of the order of 10-3. 

Next we consider an asymptotic condition where the activities of the input, free, and cytosolic 

phosphorylated compartments assume almost constant values. These assumptions are consistent with our 

results on tracer kinetics. It follows from Eq. (S7) that 𝐴% = 	𝑘/𝐴$ is constant. Eqs (S5) and (S6) imply that  



𝐴% = 	
ac

adMac
	𝑘-	𝐴. .          (S28) 

Next we consider the asymptotic expression of the time derivative of Eq. (S15), which reduces to 𝐴<?GGH =

𝑣	𝐴%	, where both 𝐴<?GGH and 𝐴%	are constant. Combination of this result with Eq. (S28) leads to 

𝑘- = 	
adMac
ac

	149NNO
v
	 -
1:

 ,          (S29) 

with 𝑣 a given physiologic parameter. 

We consider dependence on 𝑒 of 𝑘-, as given by Eq. (S29). The activity 𝐴. is approximated by 𝐴.w = 𝐷 −

𝐴yo /𝑒, while the time rate 𝐴<?GGH is replaced by 𝐴<?GGHo /𝑒. It follows that Eq. (S29) is equivalent to 

𝑘- =
adMac
ac

	149NNO
z

v
	 -
[?{1|

z = 	 }
[?{1|

z  ,        (S30) 

with Λ, 𝐷, 𝐴yo  constant quantities. In particular, Λ is defined in Eq. (S30). We assume that the rate constants 

𝑘) and 𝑘+ are independent of 𝑒; this condition is consistent with the results obtained by the simulations 

performed with varying 𝑒. Then, according to Eq. (S30), growth of 𝑒 implies necessarily decrease of 𝑘-, 

and conversely. 

 

Supplementary Material S4. Estimate of 𝑘+ from Michaelis-Menten kinetic constants. 

We discuss here an estimate of 𝑘+ which is obtained by comparison with the phosphorylation rate described 

by means of the Michaelis-Menten law, with values of the constants given by [S5].  

The value of the Michaelis-Menten constant 𝐾p	for hexokinase II with respect to FDG as substrate is 

recovered from Table 2 in [S5] as 𝐾p	 = (174 ± 15) 𝜇M; 𝑉p	is reconstructed as 𝑉p = (2.6 ± 0.30) 𝜇M/s, 

since Table 2 provided the Vmax ratio of FGD with glucose. The constant values are reported also in [S6], 

Table 1 p.130, but without indication of errors.  

The values of 𝐾p	and 𝑉p are first transformed in Bq/mL and Bq/mL 1/min, respectively, assuming an order 

of magnitude of 1031. Then they are substituted into the nonlinear expression of the reaction rate 𝑅 of 

phosphorylation which, following from application of the Michaelis-Menten equation, can be written as 

𝑅 = 3l
o2Mml

	𝐶#	. 



The ratio 𝑉p/(𝐶# + 𝐾p)	is identified with 𝑘+. The concentration 𝐶# = 𝐴#/𝑉<=> is estimated as ≅ 44 ∙ 107 

Bq, corresponding to 𝐴# ≅ 104 Bq and 𝑉<=> ≅ 0.134 ∙ 10-3 cm3 for 6	∙	105 cells. In particular, 𝐶# is much 

smaller than 𝐾p so that 𝑘+ reduces to the ratio 𝑉p/𝐾p. The result is 𝑘+ = 0.90 ± 0.13 1/min, which is 

comparable with the mean value of 𝑘+ for the 4C model, Gl1 experiments, shown in Table 3. 
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